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We provide a survey of the Tomita representations of quantum and classical 
mechanics in a language suited for physical applications, based on a modified 
bra/ket formalism. The mathematical structure of the abstract representation 
and its physical interpretation is outlined. The relation between the Dirac 
formulation of quantum mechanics and the present one is shown. A description 
is given of the classical limit of quantum mechanics. A set of concrete representa- 
tions for the quantum case is provided. The formalism is applied to the free 
particle and the harmonic oscillator. The quantum dynamics as a perturbation 
on the classical dynamics is briefly considered. 

1. I N T R O D U C T I O N  

The b r a / k e t  f o r m u l a t i o n  o f  q u a n t u m  mechan ics  p rov ides  a c o m p a c t  
and  t r a n s p a r e n t  genera l  l anguage  cover ing an inf in i tude o f  Hi lbe r t  space  
rep resen ta t ions .  Each  r ep re sen t a t i on  is o b t a i n e d  f rom the abs t rac t  fo rmula-  
t ion  by  select ing a bas is  in the ket  space ,  while  many  o f  the results  o f  the 
theo ry  can  be o b t a i n e d  on  the abs t rac t  level,  i n d e p e n d e n t  o f  the deta i l s  o f  
the  i n d i v i d u a l  r epresen ta t ion .  We agree with von N e u m a n n  (1955), who  
s ta ted  tha t  " D i r a c . . .  has  g iven a r ep resen ta t ion  o f  q u a n t u m  mechan ics  
which  is sca rce ly  to be  su rpas sed  in brevi ty  a n d  e legance . "  Its ma in  d i sadvan-  
tage is its fo rma l  charac te r ,  h id ing  ma thema t i ca l  intr icacies ,  which  in specia l  
cases m a y  be o f  cr i t ical  impor t ance .  However ,  in most  cases it is a rou t ine  
t ask  to t r ans l a t e  express ions  in the  b r a / k e t  l anguage  into r igorous ly  def ined  
m a t h e m a t i c a l  s ta tements .  

Never the less ,  in spi te  o f  the  impress ive  genera l i ty  o f  the Di rac  language ,  
it has f u n d a m e n t a l  l imi ta t ions .  There  exist  r ep resen ta t ions  o f  q u a n t u m  
mechan i c s  tha t  a re  no t  covered  by  the formal i sm.  The  reason  for  this is that  
D i r ac  m a d e  the a s s u m p t i o n  tha t  the r ep resen ta t ions  shou ld  be i r reduc ib le ,  
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i.e., that the set of self-adjoint operators on the Hilbert space corresponds 
exactly to the set of physical quantities (observables) of the theory. Or, in 
group-theoretic language, that the algebra of operators of the representation 
is exactly the algebra generated by the symmetry group of the system (e.g., 
the Galilei group).  

There exist, however, representations of quantum mechanics that go 
beyond this assumption of irreducibility. In fact, one such representation 
is widely used in physics, namely the representation based on Wigner 
functions, sometimes somewhat misleadingly called phase space functions. 
This formulation, originated by Wigner (1932), is reviewed by Hillery et aL 
(1984). Other representations can be obtained using techniques from the 
C*-algebra formulation of quantum mechanics. 

We may construct a set of representations which differs from the set 
covered by the Dirac formalism, and which is based on the standard von 
Neumann algebras of the Tomita-Takesaki theory (Takesaki, 1970). [For  
an introduction, see, e.g., Bratteli and Robinson (1979).] In this paper we 
call these representations Tomita representations. Today the use 6f Tomita 
representations is generally limited to the select few C*-algebra theorists. 
However, some of the applications clearly demonstrate the great potential 
of this kind of representation. The study of classical limits is one such field 
of application. Primas (1979) and Grelland (1985) have considered the 
Born-Oppenheimer approximation as a classical molecule-structure limit, 
using a Tomita representation. For some systems a satisfactory quantization 
into an ordinary irreducible representation may be difficult to achieve, as 
pointed out by Ford et al. (1990) for the case of the toral phase space. 
However, a quantization of the torus was actually achieved by Benatti et 
al. (1990) by using a Tomita representation. Their paper shows, moreover, 
how the stochastic properties may be explored, working in such a representa- 
tion. Narnhofer and Thirring (1989a, b, 1990) and Hudetz (1988, 1990) have, 
moreover, considered precisely defined notions of quantum stochasticity in 
analogy with the notions of classical ergodic theory. Their results open a 
new area of physical investigation on specific systems. Prigogine et al. (1991 ) 
applied a Tomita representation in a study of the Poincar6 theorem in 
ciassical and quantum mechanics. 

It is also interesting to observe that the Wigner function formulation 
of quantum mechanics corresponds closely to one of the Tomita representa- 
tions. Thus, the theory of the Tomita representations can be looked upon 
as a rigorous mathematical generalization of this theory. This requires, 
however, a modification of the Wigner formulation. The Wigner function 
W(p, q) is obtained by the unitary Wigner transformation from the density 
matrix p(x, y) in a coordinate representation. However, the density matrix 
is not generally a square-integrable function in the variables x, y, since it 
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is normalized by the trace: 

f p(x,x) dx= l 

Only the density matrix of a pure state is guaranteed to be square- 
integrable. A mixed state is a convex linear combination of pure states. If we 
replace the expansion coefficients with their square roots and apply the 
Wigner unitary transformation to the resulting function, we obtain a Tomita 
representation. It turns out that much of the structure of the original Wigner 
theory is retained in this representation, which we consequently call the 
Wigner representation. The algebraic approach to the Wigner theory 
presented by Bohm and Hiley (1980) is closely related to the Wigner 
representation. The formalism of Prigogine et al. (1991 ) corresponds to a dif- 
ferent Tomita representation, called the canonical representation in the present 
paper. Our square ket I'] replaces the double ket l-)) of Prigogine et al. 

In addition to the irreducibility assumption, another important limita- 
tion of the Dirac formalism is that it does not include the special case of 
fi =0--classical mechanics--although it is well known (Koopman, 1931; 
Reed and Simon, 1975) that classical mechanics may well be formulated 
in terms of  Hilbert space operators. The reason is, again, the requirement 
that the representation should be irreducible. Classical mechanics corres- 
ponds to a commutative algebra, which does not have any irreducible 
operator representations. However, it has Tomita representations. 

This paper has two aims. One is to provide a formulation of the theory 
of Tomita representations suitable for physical applications, filling some of 
the gap between the conventional formulations of quantum and classical 
mechanics and the relevant parts of the highly abstract and mathematically 
complex Tomita-Takesaki theory. To do this, we modify and extend the 
bra/ket  formalism to include the Tomita representations. In order to distin- 
guish between the two cases, we will use the square bracket [. ] for the kets 
of the Tomita representations and keep the angular bracket 1" ) for the usual 
representations considered by Dirac. By selecting different bases of the 
"square" ket space, we obtain a variety of new representations. 

The second aim is to explore some general properties of quantum 
dynamics as compared to the classical case. Since the formalism in terms 
of square kets also includes classical mechanics, it is particularly suited for 
studying the quantum/classical correspondence, and it turns out to be a 
powerful tool for obtaining a systematic and general quantization procedure, 
which we call standard quantization. 

Although the new class of representations still is based on Hilbert space 
operators, they have certain notable properties: (1) They are reducible, 
meaning that not all Hilbert space vectors correspond to states, and that 
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not all self-adjoint operators correspond to physical quantities. (2) The 
mixed states can be represented by Hilbert space vectors, a fact which leads 
to a unified description of  pure and mixed states. (3) The unitary operators 
on the generalized Hilbert space provide a nonprojective representation of 
the Galilei group, which simplifies the transformation expressions. 

The paper  is organized as follows. First we give a brief sketch of  the 
Dirac formalism to establish the terminology. Then the square bra/ket  
formalism describing the Tomita representations of  quantum and classical 
mechanics is outlined. It is shown how the process of quantization or 
dequantization (taking the limit h = 0) is done in this framework. The 
resulting machinery is applied to some simple physical systems to see what 
additional insight is to be gained. It appears that the similarities and 
differences between quantum and classical mechanics are more clearly 
brought out in this kind of representation, facilitating comparison between 
classical and quantum dynamical systems. 

2. THE DIRAC REPRESENTATION OF A GALILEAN PARTICLE 

To describe the Galilean group specifically, we use a point particle 
moving in one dimension as a generic model. The extension to several 
dimensions or several particles is straightforward. 

The introduction of  more than one bra/ket  formulation requires a 
precise language. The Dirac formulation covers an infinite class of  concrete 
representations, e.g., the SchrSdinger, the momentum, or the energy rep- 
resentation, each obtainable by the selection of  a specific basis of the ket 
space. We therefore talk about the Dirac formalism as the abstract Dirac 
representation. In a similar way we will talk about the abstract Tomita 
representation represented by the square ket space, which will be defined 
below. The square ket space, too, is equipped with a variety of bases, leading 
to different concrete Tomita representations. 

We will use capital letters, A, B, P, Q , . . . ,  to denote operators acting 
on a ket space. When necessary we indicate which of the two spaces we 
deal with by writing (A)D for the Dirac ket operator A and (A)-r for the 
square ket operator representing the same quantity. A Hilbert space vector 
in the Dirac representation is written If). The Dirac ket space is called 9. 
@ contains the Schr6dinger (position) basis 

Bs = {Iq)l q ~ R} (1) 

The Galilean group is generated by the unitary operators of translation 
U(b) and the operators of  the Galilean boost U(mv), with the properties 

U(b)lq) = Iq+ b) (2) 

U(mv)lq)-- Iq) e-imvq/t~ (3) 
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Here 

U ( b )  = e ibe/h 

U(mv) = e -i'~O/~ 

with the setf-adjoint operators P and Q. Formally, 

[Q, P ]  = ihl  

We also have the momentum basis 

BM = { ] p ) l p c R }  

U(b) IP) = lP} e'b"/" 

U(mv)[p} = l P -  my) 

( q l p ) =- (2~h) - 1/2 eiPq/h 

(4) 
(S) 

(6) 

(7) 

(8) 
(9) 

(10) 
The Hamiltonian H(P, Q) is identical to the energy operator, and the time 
evolution If}, = V( t )[ f )  is generated by the time evolution operator 

V(t) = e -"H/~ (11) 

3. T H E  T O M I T A  R E P R E S E N T A T I O N  

The abstract Tomita representation (3-, J, P, ~ )  consists of an abstract 
Hilbert space 3- of square ket vectors If] ,  a conjugation operator J on 3-, 
a self-dual cone P of vectors in 3-, and a subalgebra ~ of  operators on 3-. 
The self-adjoint elements of ~g represent the physical quantities (observ- 
ables) of the theory. In short, s~ is the physical algebra of the system. 

The conjugation J is an antiunitary, second-order operator, i.e., it has 
the following properties: 

(i) J x l f ]  = x * J l f ]  V x ~ C  

(ii) [ g I J * J I f ] =  [ f i g ]  (12) 
(iii) j2 = I 

P is the state cone-- the  normalized vectors of P represent the states of the 
system, including the mixed states. The property of self-duality is defined 
thus: P = P^, where P^ is the dual of P, i.e., 

P" = { I f ] ~ Y l [ g l f ] - > O  V l g ] e P }  (13) 

Self-duality implies that the inner product between the vectors of P are real 
and positive. The cone P has the properties 

(i) I / ] ~ P  ~ J l f ] = l f ]  

(ii) A 6 ~ d a n d l f ] c P  ~ A J A J I f ] ~ P  (14) 

(iii) J I f ] = l f ]  ~ If]=-lg]-lh]; Ig] , lh]~P 
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The expectation value (A) of  a quantity A ~ M for the state I f ]  ~ P is 

(a) = [ f lAI f ]  (15) 

To show the relation between the Dirac and the Tomita representations, 
we may construct the square ket space from the Dirac ket space. For this, 
we need an antiunitary operator T on @. We choose T to be defined relative 
to the Schr6dinger basis. The action of T on an arbitrary ket I f )  is defined 
by 

(x[(Tlf ) )  = ( f ix )  (16) 

for Ix)c Bs. We write 

If*) = T]f) (17) 

The square ket space is now defined as 3--= ~ | 9 .  From the Schr6dinger 
basis Bs in ~ we construct the canonical basis Bc of ~-, 

Bc = {[xy] = [x)ly*)} (18) 

where Ix) and lY) are kets in the Schr6dinger basis. 
Each operator A in @ has a counterpart in the physical algebra d ,  

defined by its action on a basis ket Ixy] by 

( A )ylxy ] = ( ( A )DlX) )fy *) 

or, 

It is easily seen that 

(19) 

(A)T = (A)D| (I)D (20) 

J(A)TJ = (I)D|  (A)I) (21) 

The physical quantity represented by (A)D acting in the Dirac ket space is 
represented by (A)T in the square ket space. The position and momentum 
operators constructed this way act as 

Qlxy] = x[xy] (22) 

Pixy] = (2r 1/2 f e-lSX/%lsy] ds (23) 

Now we are in a position to identify the conjugation J and the self-dual 
cone P. The conjugation J is determined by T, 

Jlx)ly) = ]y*)[x*) (24) 

The self-dual cone P is the set of vectors of the form 

If] = Y~ IJ)lJ*)cJ (25) 
J 
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where {I J)} is any countable, orthonormal basis for 9,  and the cj are positive 
reals such that Y~j c~ is finite. 

The states are represented by normalized vectors in P. Thus, the vectors 
of 3- outside P cannot be interpreted as state vectors. We have two kinds 
of states: pure and mixed. The pure state corresponding to a Dirac ket [f)  
is represented by the square ket [ f ]  = If)[f*).  Obviously, this is a vector 
in P. 

A mixed state is usually described as a probability distribution I J) ~ pj 
of  an orthonormal basis {I J)} in @, for instance, represented by the density 
matrix D =Z j  ]J)Pj(J]. In the Tomita representation this mixed state is 
represented by the vector 

I f ]  = Y. (p j ) l / z ] j ) l j , )  (26) 
J 

It follows that, in fact, any vector in P can be interpreted as one particular 
pure or mixed state. 

The inner product in the space .3- of two states is different from that 
of the space 9. Let ] f ]  be the state vector (26), while 

[g] = F. (pk) I /2 lk) lk  *) (27) 
k 

Then, 

[ g l f ]  = ~. (PjPk)l/2l(klJ)12 (28) 
jk  

For pure states we obtain 

[ j l k  ] = [(jlk )[ 2 (29) 

The expectation value of  an operator A is, for a pure state ]J], 

( A )  = [jl(  A )sl j  ] 

= ( j* I ( j [ ( (A)Dl j ) ) l j* )  

= ( j I (A)DlJ)  (30) 

and, for a mixed state I f ]  = ~ j  (pj) l /2l j ) l j*) ,  

CA) = [ f l ( A ) s [ f ]  

= ~ ~ (p j ) l /2 (pk )~ /2 ( j [ (A)Dlk ) ( j* lk* )  
j k 

= E p j ( j l (A)D[ j )  (31) 
J 

We see that the usual expression for the expectation value extends to the 
mixed states. 
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Nondiagonal matrix elements [ j l A ]k ]  are not related to transition 
probabilities, as one may have hoped. For pure states from an orthonormal 
set {[J]}, 

[ j lAI  k ] = ( j l (  A )Dl k ) ( k l j )  

= (J[ (A)O[ k)  Sjk (32) 

whereas for the nonpure states I f ]  =Y.j [j]bj and [g] =Y~j ]j]cj 

[ f l a l g ]  = • bjcs(jl( a )D]j) (33) 
J 

Thus, if {I J)}, and hence also {]j]}, are orthonormal sets, the matrix of A 
does not have off-diagonal elements between pure state vectors. 

To express transition probabilities, we need the conjugation J: 

[ f ] a J a J I g  ] = (* f [ ( f l A J a J I g ) [ g * )  

= ( * f l ( f l a J a l g ) l g * )  

= ( * f l ( f l a J ( ( A ) D l g ) ) l g * )  

= ( * f l ( ( f l ( a ) D ) l g ) ( ( a ) i ~ [ g * ) )  

= I ( f l (A)o]g) l  2 (34) 

We then consider the dynamics. The time evolution operator on the square 
ket space U ( t )  is also constructed from the unitary operator V ( t )  = e -i~H/~ 
by using J: 

U ( t )  = V ( t ) J V ( t ) J  = e - ' ' (~ - sus ) / h  = e -tL (35) 

Property (14)(ii) ensures that U ( t )  maps state vectors onto state vectors, 
i.e., that P is invariant under U ( t ) .  We see that the generator of  time 
evolution in a Tomita representation is different from the energy operator 
(H)D. The operator L = i ( H  - J H J ) / h  is the quantum analog of  the classical 
Liouville operator, and is called the q u a n t u m  Liouvil l ian.  

It is easily seen that application of U ( t )  leads to the correct Schr6dinger 
equation. Consider the state I f ]  = [J)lJ*): 

ih (O/Ot ) l f ]  = ih (0/0  t)] j)[j*)  + ih [j)(O/Ot)[j*) 

= ( (H)D[ j ) ) ] j* )  + [j)(--(H)D[j*)) 

= ( ( H ) + -  J ( H ) w J ) [ f ]  (36) 

4. THE GALILEI GROUP 

The unitary representation of  the Galilei group is constructed in a way 
similar to that applied in the construction of  the time evolution operator. 
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The translation a distance b is carried out by the operator 

U ( b )  = e -ib(u ~P;)/~ (37) 

whereas the Galilei boost with a velocity v is represented by 

U ( v )  = e i m v ( o - J o j ) / h  (38) 

There exists one particular basis in the square ket space that transforms in 
a fashion similar to a point in the phase space of the particle. This basis 
relates to the Wigner functions, which correspond essentially to vectors in 
P represented in this nicely transforming basis. An appropriate name for 
the basis is therefore the Wigner basis, Bw. This basis is related to the 
canonical basis B c  in the following way: Let Bw = {IqP]} and Bc  = {Ixy]}. 
Then 

[ x y l q p ]  = (2rch)-l/ZO(q- (x + y)/2) e '(x y)p/h (39) 

The action of the unitary operators of the Galilei group on the Wigner 
basis is 

U( b )[qp] = Iq + b, p] (40) 

U(v)lqp] = [q, p + rnv] (41) 

Moreover, 

U ( v )  U( t ) lqp]  = U(v) lqp] ,  = [q+ vt, p +  my],  (42) 

Being a possible carrier of a nonprojective representation of the Galilei 
group is one of the major advantages of the square ket representation, and 
a necessary condition for the ket space to carry both the quantum and the 
classical algebra of point mechanics. 

5. D E C O M P O S I T I O N  OF THE POSITION AND 
M O M E N T U M  O P E R A T O R S  

To study the transition h --> 0, it is useful to make a decomposition of 
the operators Of position and momentum. 

We define the generators of the Galilei group 

D = (P  - J P J ) / h  (43) 

and 

E = (Q - JQJ) /h  

We also define the self-adjoint operators 

Qo = (Q + J Q J ) / 2  

(44) 

(45) 
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and 

Po = (P + s e s ) / 2  

Grelland 

(46) 

Lo = ( i / m ) P o D  + i V  ( Q o ) E  

A = ( i / h ) ( V ( Q )  - J V ( Q ) J )  - i V ' ( Q o ) E  (52) 

If A is expanded in a Taylor  series about  Qo, the  second term on the 
right-hand side of (52) cancels the first nonzero term of the Taylor expansion. 
Thus, A represents a second-order term in h. We have L = Lo for a free 
particle, a particle moving in a linear potential, and a harmonic oscillator. 

We now want to consider an important  new feature of  the Tomita 
representation as compared to the Dirac representation: The energy operator  
is different from the time evolution operator. From (50), together with the 
fact that a ket in P is invariant under J, we infer that aft eigenket of  H in 
P is also an eigenket of  L with eigenvalue 0. 

(51) 

and 

where 

with the properties 

[Qo, Po] = [D, E]  = [Qo, E ]  = [Po, D]  = 0  (47) 

while 

[Qo, D]  = - [Po ,  E]  = i I  (48) 

We can now express the position and momentum operators in terms of 
these operators: 

Q = Qo + hE /2  

P = Po + h D / 2  
(49) 

J Q J  = Qo - hE /2  

J P J  = Po - h D / 2  

Here, the noncommuting coordinates Q and P are expressed as a sum of 
a c o m m u t i n g  set  of coordinates, plus correction terms, proport ional  to h. 
Thus, we are in a nice position to consider the limit h ~ 0. 

We are now able to write down the quantum Liouvillian in terms of 
the decomposed operators.  The Liouvillian is o f  the form 

- i h L  = H - J H J  

= (pZ  _ j p Z j ) / 2  m + v ( O )  - J V ( O ) J  

= - i h L o -  i h A  (50) 
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The energy operator  H is 

H = p2/2m + V(Q) 

= (1/2m)P~+ (h/Zm)PoD + (hZ/Sm)D2+ V(Qo) 

+ (h/2) V'(Qo)E + (hZ/8) V"(Qo)E 2 + ... 

assuming that V can be expanded in a Taylor series. 

915 

(53) 

6. THE CLASSICAL L I M I T  

It is easily seen that 

Q ~ Q o  as f i ~ o  
(54) 

P ~ P o  as h + O  

in the strong resolvent sense. Operator convergence A~-> A0 in the strong 
resolvent sense means that A~]~0]oAoI~] for suitable vectors, or, 
equivalently, ei'A"lqJ]~ ei'A~ for all t and all vectors in 3-. Thus, we see 
that, in a specified topological sense, the noncommuting set of  quantum 
coordinates approaches a commutative set in the classical limit. 

Classical mechanics corresponds to the case h = 0. The physical quan- 
tities are then represented by the commutative algebra generated by Q0 
and Po. 

It is of  physical relevance in which sense the convergence above exists, 
because the convergence criterion (topology) determines what properties 
go smoothly into the classical domain and what properties may have an 
abrupt  change. Strong resolvent convergence implies that the spectrum 
cannot suddenly expand at the limit. This means that each value of the 
spectrum of the classical operator  willhave at least one value in the spectrum 
of  its quantum correspondent  that approaches it in the limit. However,  the 
spectrum may suddenly contract, which implies sudden loss of  information 
at the limit. To prevent contraction, one needs norm resolvent convergence, 
which is not what we have here. 

Furthermore,  we cannot a priori assume a smooth transition of the 
eigenvector corresponding to a spectral value at the limit h = 0, we can only 
count on a smooth transition of the eigenvalue itself. Contraction at the 
h = 0 limit means that a single point in the classical spectrum may dissolve 
into a range of values through quantization. An example is the single station- 
ary energy value of the classical harmonic oscillator, which is mapped  into 
the whole eigenvalue spectrum of the Hamil tonian through quantization. 
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The limiting process is completed by considering the time evolution at 
the h = 0 limit. The quantum Liouvillian is written as the sum 

L = Lo+ A (55) 

The first term is the surviving term at the limit h = 0, whereas the last term 
may be interpreted as a quantum correction term. This term may be expanded 
to the leading order: 

where 

A = L, + O(fi 4) (56) 

L1 = (ih2/24) V"(Qo)E 3 (57) 

Here, V" means the third derivative of V. The expressions are obtained by 
a formal Taylor expansion. Note that the higher terms of L also contain 
correspondingly high derivatives of V. In particular, if V is a second-order 
polynomial (harmonic oscillator), then L =  Lo. We call Lo tire classical 
Liouvillian, since 

iL~iLo  as h ~ 0  (58) 

in the strong resolvent sense, i.e., that 

e - t t ~  e -`g~ as h ~ 0  (59) 

in the strong sense. In this way, the Tomita representation provides a nice 
description of  the classical limit of quantum mechanics, in the sense h ~ 0. 

This formalism provides a universal quantization procedure, which we 
will call standard quantization. In this quantization procedure, we start by 
formulating the classical system in terms of commuting (usually multiplica- 
tion) operators Qo, Po on the Hilbert space of phase space functions. The 
system is quantized by replacing these by Q = Qo + hE/2 and P = Po + hD/2 
in the same representation. 

7. T H E  W I G N E R  R E P R E S E N T A T I O N  

To display the connection between the square ket space and the rep- 
resentation of quantum mechanics in terms of Wigner state functions, we 
will express some of the equations above in the Wigner basis (39). We define 

f (q,  p) = [qp]f] (60) 

The square-integrable function f (q,  p) is related to the Wigner function 
W(q, p) as described in the introduction. In the Wigner basis the operators 
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defined in the previous section attain the form 

Qof(q, p) = qf(q, p) 

Pof(q, p)= pf(q, p) 
(61) 

Df(q, p) = i~ (O/aq)f(q, p) 

Ef(q, p)=-i(O/Op)f(q, p) 

This leads directly to the expressions for the position and momentum 
operators: 

as well as 

Q = q ' -  (ih/2)O/Op 
(62) 

P = p ' +  (ih/2)O/~q 

Jf(q, P)=f*(q,  p) 

JQJ = q" + ( ih/2m) O/Op (63) 

JPJ = p" - (ih/2) O/Oq 

that since neither the position nor the momentum operator is a Note 
multiplication operator, the corresponding state functions of the cone P 
are not probability distributions of any of these quantities. This is a general 
fact, independent of whether the functions accidentally turn out to be 
nonnegative. However, we note that the state functions are real, since they 
are invariant under J. 

The energy operator (Hamiltonian) has the form 

H(P, Q)=lm-l(p2-(h2/4)(O2/Oq2)+ihp. O/Oq)+ V(Q) (64) 

The quantum Liouvillian attains the form 

L= m-'p.O/Oq+ V ( Q ) -  V(JQJ) (65) 

In this basis, Lo is the well-known classical Liouvillian 

Lo = m-~p �9 O/Oq - V'(q). O/Op (66) 

The first quantum correction becomes 

L~ = - (  h 2/Z4m 3) V"'( q) 03/Oq 3 (67) 

The transformations of the Galilei group are expressed as 

U(b)f(q, p ) = f ( q -  b, p) 
(68) 

U(v)f(q, p)=f(q,  p -  my) 

or, in the Schr6dinger picture, f, = U(t)f, 

U(v)f(q,  p) =f(q  - vt, p - my) (69) 

902/32/6-3 
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8. A LOCAL BASIS FOR THE CLASSICAL POSITION 

In dealing with complicated potentials, it is useful to have a multiplica- 
tive potential operator. This can also be obtained in the Tomita representa- 
tion by selecting the proper  basis. We will consider two such bases, one in 
which the x variable is associated with the classical position, and one for 
which it is associated with the quantum position. 

The first one, which we denote by luv], is defined relative to the Wigner 
basis by 

[uv]qp] = (2~-) -1/2 eiVP6(u - q) (70) 

This change of basis corresponds to a Fourier transformation in the second 
variable. We consider state functions in the new basis, 

f (u ,  v) = [uvlf]  (71) 

The relevant operators become 

which lead to 

Qof(u ,v )  = u f ( u , v )  

Po f (u ,v )  = - i O / o v f ( u , v )  

Df(u,  v) = - i  O/Ou f (u ,  v) 

Ef(u, v)=vf(u, v) 

Qf(u,  v) = (u + ( h / 2 m ) v ) f ( u ,  v) 

Pf(u,  v) = - i(O/Ov+ (h /2 )  O/ou)f(u, v) 

The classical Liouvillian attains the form 

Lo = (i /m)(-O2/Ou Ov + V ' (u)v)  

with the first quantum correction 

L1 : ( ih 2/24m 3) V"'( u) v3 

(72) 

(73) 

(74) 

(75) 

9. A LOCAL BASIS FOR THE QUANTUM POSITION 

The basis in which the x variable is associated with the quantum posi- 
tion is defined in Section 3. It is the canonical basis { ]xy] } (18). We consider 

f ( x ; y )  = [xyl f]  (76) 
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The important advantage of this representation is that if we know the 
Schr/Sdinger wave function 4,(x) of the state, the state function in the local 
representation is f (x ,  y) = q,(x)qJ(y)*. The relevant operators attain the form 

Jf(x, y) = f * ( y ,  x) 

Qof(x, y) = (1/2)(x + y) f (x ,  y) 

Pof(x, y) = - (  ih/2)(O/Ox - O/Oy)f(x, y) (77) 

Df(x,  y) = -i(O/Ox + O/Oy)f(x, y) 

Ef(x ,  y)  = h -L(x - y ) f ( x ,  y) 

which lead to 

We also have that 

Qf(x ,  y) = xf(x, y) 

Pf(x,  y) = - i f i  o/ox f (x ,  y) 
(78) 

JQJf(x, y) = yf(x,  y) 
(79) 

JPJf(x, y) = ih O/Oy f ( x ,  y) 

We obtain the following formal expression of the quantum Liouvillian: 

L = - i h  ( H ( x )  - H ( y ) )  (80) 

Moreover 

L o = ( - i h / 2 m ) ( O 2 / O x 2 - O 2 / O y 2 ) + ( i / f i ) V ' ( ( x + y ) / 2 ) ( x - y )  (81) 

with the first quantum correction 

L, = - (1 /2h)  V " ( ( x -  y ) / 2 ) ( x -  y)3 (82) 

It may come as a surprise that the constant fi appears even in the classical 
case. This is due to the dual role played by h in using this basis. The 
physically relevant appearance of fi comes from the Galilei group, and is 
present in the expressions relating Q, P to Qo, P0. However, in addition, 

enters the unitary transformation connecting the Wigner representation 
and the canonical representation, and this h cannot be set equal to zero, 
even in the classical limit. It is one of the advantages of the abstract bra/ket  
formulation that these two uses of h can be kept separate. 

The transformation relating this local representation and the Wigner 
representation can be obtained from (39) and expressed as operators on 
functions. Let fw(q, P) be the Wigner representative. The canonical rep- 
resentative fp(x,  y) is 

fp = V ( I |  UF)fw (83) 



920 Grelland 

where V is the coordinate transformation 

[Vf](x, y) = f ( ( x + y ) / 2 ,  (y - x)/2) 

and UF is a Fourier transformation. 
The energy operator of this representation is the usual Schr6dinger 

Hamiltonian acting on the variable x. However, we can take advantage of 
the work we have done on the ket level, and derive the lowest order terms 
of expanded Hamiltonian from (53), using the expressions of (77): 

H = no +/-/1 + . .  �9 (84) 

Ho =pg/2m + V(Qo) 

= -(h2/8m)(O2/Ox2+O2/oyZ-202/Ox Oy)+ V( ( x+y) /2 )  (85) 

H, = ( h /2m)(  PoD+ V'( Qo)E) 

= -(h2/4m)(O2/Ox 2 - 02/Oy 2) + V'((x + y) /2) (x  - y) /2  (86) 

10. CLASSICAL MECHANICS 

The conventional Hilbert space formulation of classical mechanics is 
obtained by choosing the Wigner representation of the commutative algebra 
generated by Po and Qo. This formulation is only a slight modification of 
the statistical Liouville theory, basing the description on real square- 
integrable amplitudes f (q,  p) instead of  integrable probability distributions 
p(q, p) =f2(q, p). The reformulation in terms of square kets increases the 
flexibility with respect to the choice of representations. 

To be able to work on the abstract ket level, we may need an operator 
definition of the Poisson bracket. This is provided by using the self-adjoint 
operators D, E defined in (43), (44). Let A, B be arbitrary operators. The 
Poisson bracket of the pair is the operator 

{F, G} = [D, F][E, G] - [E, F][D, G] (87) 

When working in a representation of phase space functions, i.e., in the 
Wigner representation, this definition coincides with the customary one, as 
will be seen by substituting the explicit expressions for D and E in that 
representation. In particular, we note that 

{Q, P} = {Oo, eo} = 1 (88) 

The physical algebra of classical mechanics is the commutative operator 
algebra generated by the position operator Qo and momentum operator Po- 
The states are represented by normalized kets in a self-dual cone P+, with 
the associated conjugation J, such that 

(A) = [ f lAl f ]  (89) 

is the expectation value of the quantity A in the state If]. 
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The state cone is conveniently described in the Wigner basis as the set 
of  positive functions: 

P+ = {If][[qPlf] >- 0} (90) 

The conjugation J is the same as for the quantum case, i.e., complex 
conjugation in the Wigner representation. 

The evolution operator is the classical Liouvillian, 

Lo = ( i / m ) P o D + ( i / m ) V ' ( Q o ) E  [Eq. (51)] 

I~] = -Lol~-I  (91) 

(91) represents the equation of  motion of the SchrSdingerpicture of classical 
mechanics, the analog of the Liouville equation. Operator analogs of Hamil- 
ton's equations, as well as Newton's second law, are obtained by working 
in the Heisenberg picture: 

Po( t) = U'LPo U-tL (92) 

Po= [L, t'o] 

= {t-/, eo} 

= - V'(Qo) (93) 

11. T H E  FREE PARTICLE 

We now turn to the consideration of systems that have identical quan- 
tum and classical Liouville operators, and where the Heisenberg equations 
of  motion can be solved exactly. First we will take a fresh look at the motion 
of  a free particle. 

The solutions of the Heisenberg equation are most conveniently 
obtained by working in the Wigner representation, where L = y d/dx,  choos- 
ing m = 1. This leads immediately to the SchrSdinger picture solution 

f ( x ,  y) = f ( x - y t ,  y) (94) 

and to the Heisenberg picture solutions 

Qo( t) = Qo + tPo 

Po( t ) = Po 

E(t )  = E + tD 

D ( t ) = D  

Q(t) = Q+ tP 

P ( t )  = P 

(95) 
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The difference between classical and quantum mechanics is reflected in the 
dispersion of  the quantum position, even for pure states. By dispersion, we 
mean the increase with time of the value of A Q ( t ) =  [ ( Q ( t ) 2 ) - ( Q ( t ) ) 2 ]  1/2. 

We are interested in the asymptotic behavior  as t-> oo. By inserting the 
Heisenberg solutions, one easily sees that 

AQ(t)-+ t AP(0)--> ~ (96) 

The origin of  the dispersion is related to the initial uncertainty of  P. By 
decomposing P, this uncertainty can be decomposed:  

Ap = APo + 4~h 2 A D +  ~ ( ( P o D ) -  (Po)(D)) (97) 

The first term represents the classical uncertainty. D is conjugate to Qo, in 
the sense that [Q0, D]  = ihL Thus the next term is the uncertainty in P 
resulting from the uncertainty relations and the localization of Qo- Compar-  
ing these expressions with the expression for the classical dispersion, 

AOo(t)  ~ t AP0(0) ~ oo (98) 

we see that the quantum dispersion is always greater than the classical one, 
due to the uncertainty relations. 

To avoid classical dispersion, one needs a distribution sharply confined 
to a line p = r parallel to the q axis, i.e., a state function of  the form 

f (  q, p)  = g( q ) 6 ( p  - r) (99) 

The Schr6dinger evolution of  this state is 

f ( q ,  p) = g(q  - t p )6 (p  - r) (100) 

In the special case where g is translationally invariant, i.e., a constant 
function, this state will be completely stationary, not because of a lack of 
motion of  the points in the phase space, but because this motion does not 
affect the distribution. 

The property of  dynamic mixing can roughly be characterized as an 
asymptotic  change of the distribution toward a uniform distribution of  the 
quantities. Thus, as the variance of the quantum position increases faster 
than that of  the classical position, a quantum system will generally be more 
strongly mixing than the corresponding classical system. 

12. T H E  H A R M O N I C  O S C I L L A T O R  

It is well known that the similarity between classical and quantum 
mechanics is still strong in the case of  a harmonic oscillator. This becomes 
obvious when working with the Tomita representations, since in this case 
the quantal and the classical Liouville operators are still identical. We want 
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to explore this a bit further by introducing a new representation, based on 
action-angle coordinates. 

The Hamiltonian of this system is 

H = � 8 9  2) (101) 

deriving from the potential V(Q)=�89 
Our starting point is the Wigner basis, and the transformation is a local 

coordinate transformation of  this basis. The new basis is denoted Ba = {] r0]}: 

[rOIf] = [2r cos 2~-0, 2r sin 2zr01f] (102) 

where the right-hand function is the Wigner representative. The inverse 
transformation is 

[xyl f  ] = [(x2 + y2)/2, arc tan(y /x ) /2zr l f  ] (103) 

where the right-hand function is the angle-action representative. 
Here the funct ionf(r ,  0) = [rOIf ] is defined on the half-cylinder (0, oo) x 

[0, 1] subject to the periodicity condition f (r ,  O+ 1 ) = f ( r ,  0). 
The Liouvillian attains the form 

L = -0 /00  (104) 

leading to the time evolution 

U,f(r, O)=f(r,  O+ t) (105) 

both in the quantum and in the classical case. Thus, the only motion possible 
is a periodic motion of frequency 1, both in classical and in quantum 
mechanics. Moreover, the stationary states are the ones that are functions 
of  r only. 

When leaving the harmonic case, we have to introduce a quantum 
correction into the Liouvillian. It is, however, difficult to imagine that an 
irregular or chaotic classical motion will be regularized by adding such 
terms. It is therefore of interest to ask if the apparent tendency of quantum 
mechanical systems to behave less irregularly than their classical correspon- 
dents is mostly a result of  inappropriate methods of comparison. This will 
be the subject of  a forthcoming paper. 

The classical Hamiltonian of the harmonic oscillator is 

Hof(r, O) = rf(r, O) (106) 

whereas the quantum Hamiltonian is considerably more complex: 

H = H o + i h L + h 2 ( 2 r d 2 / d r 2 + d 2 / d O d r + ( 1 / 2 r )  d2/d02)/4 (107) 

A stationary state is independent of 0 (i.e., it is a,uniform distribution along 
this coordinate) and has eigenvalue 0 with respect to L, and the restriction 
H \  of H to such a state is 

H \ f (  r) = ( r -  ( h 2 r/2 ) d2/ dr2)f( r) (108) 
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13. T H E  C U B I C  P E R T U R B A T I O N  

When the potential of  the Hamiltonian includes cubic terms, we must 
include the perturbation Ut = exp(- tL1) .  We will consider the stochastic 
properties of  this perturbation when the potential only contains up to cubic 
terms, so that (hZ/24m 3) V'"(Qo)= k, a constant. 

U, is mixing if  

[qp[U~[q'p']~O as t ~ c r  (109) 

(the decay property).  We consider the asymptotic limit of  

[ qPt U, l q'P'] 

= f f f f [qp'uv][uvlGlu'v'][u'v'lq'P'] dudvdu 'dv '  

= (6(q - q')/2~r) f fexp( ivp)  exp( - iv'p') exp( - iktva)6(v - v') dv dr' 

= (6(q - q')/2rc) fexp( iv(p  - p ' ) )  exp( - i k t v  3) dv 

(1/2Ir)  f exp(- ik tv  3) dv 

= (1/27r) f cos(ktv 3) dv 

-- [F(1/3)  cos(p/6)/3k-1/3Jt -1/3 

-~0 as t ~ c o  (110) 

We see that the matrix element (correlation function) decays to zero; thus 
we have the mixing property. However,  it decays like 1-1/3 , not exponentially 
fast, which is a property characteristic of  chaotic systems. We can, however, 
conclude that the quantum perturbation contributes to the sochasticity of  
the system. 
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